

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Admin. NATIONAL OCEAN SERVICE Damage Assessment Center Florida Keys National Marine Sanctuary

Addendum to Myra Lee Grounding Incident Report

DISCUSSION: This addendum is to clarify methodologies used in the assessment of the *Myra Lee* injury site as well as include habitat data that was absent in the original report. The area measurements given in the original report were determined using the following method. The habitat data was collected during the original assessment using the techniques described below.

METHODOLOGIES

Utilizing differentially corrected, surveying-grade DGPS equipment (Trimble[®] Pro XR with a TSC1 Datalogger), the grounding site was mapped by physically tracing the outline of the injury. The coordinates generated by the tracing work were downloaded to GPS Pathfinder[®] Office data processing software version 2.70 (Trimble) and then to Arcview[®] GIS version 3.2a (ESRI), which is used to arrive at square meter area calculations for the injury features. Photographs of the injury were made using a Sony[®] DCR-TRV900 digital video camera.

Community composition, percent cover and density of the benthic community, both in the injured area and in the surrounding undisturbed area, were assessed using a modified Braun-Blanquet technique (Kenworthy and Schwarzchild, 1997; Braun-Blanquet, 1932). This method involves placement of a 0.25m^2 quadrat on the substrate. The submerged aquatic vegetation (seagrass and macroalgae) and/or coral are identified by species and assigned a cover-abundance scale value. The scale values are: 0.0 = not present; 0.1 = solitary specimen; 0.5 = few with small cover; 1 = numerous but less than 5% cover; 2 = 5 - 25% cover; 3 = 25 - 50% cover; 4 = 50 - 75% cover; and 5 = 75 - 100% cover. In order to determine the percent cover per individual species, as well as the total seagrass cover, the Braun-Blanquet scores by species and total cover are averaged over all of the quadrats assessed within each feature (injured area and undisturbed area). The point estimates of percentage cover corresponding to these average Braun-Blanquet scores are then calculated using the attached conversion table (see Appendix C). The overall percent loss of seagrass per species as a result of the grounding can then be assessed by comparing the percent cover of the injured area to that of the undisturbed area immediately adjacent to the injury.

HABITAT ANALYSIS AND COMPOSITION

Using the Braun-Blanquet technique, two species of seagrass were noted within the injury (see Table 1). None of the species comprised greater than 1% of the bottom cover (see Table 2). The same two species of seagrass were also found in the undisturbed grassbed outside the injury. The seagrass bed was predominately *Thalassia testudinum* (Turtle Grass) with an average percent cover of 10.00%.

Table 1. Summary of Raw Braun-Blanquet Scores (See Braun- Blanquet scores in Appendix B)

	Species	Control	Berm Scar	Blow Hole
Densitv ¹	T. testudinum	1.60	0.13	0.00
Bensity	H. wrightii	0.97	0.11	0.20
	S. filiforme	0.00	0.00	0.00

1) Density = D_i = SUM (S_{ij}/n)

 D_i = density of species i

j = quadrat number

 $S_{ij} = BB$ score for species i in quadrat j

n = total number of quadrats in transect

Table 2. Braun - Blanquet Scores converted into percent cover. (See Conversion Table in Appendix C)

	Species	Inside Injury	Surrounding Habitat	
	T. testudinum	1.00 %	10.00 %	
Percent Cover	H. wrightii	1.00 %	2.05 %	
	S. filiforme	0.00 %	0.00 %	
	TOTAL		12.05%	

REFERENCES

Braun-Blanquet, J. 1932. *Plant Sociology*- the study of plant communities. G.B Fuller and H.S Conrad, Eds. Koeltz Scientific Books. Koenigstein. West Germany.

Kenworthy W.J. and A. Schwarzchild. 1997. Vertical growth and short shoot demography in *Syringodium filiforme* in outer Florida Bay, USA. Marine Ecology Progress Series. vol 173. pp. 25-37.

Appendix A: *Myra Lee*: Braun-Blanquet Damage Assessment and Habitat Characterization

Percent Cover and Services Lost

		Relative Percent of	Percent Cover in	Percent Cover	Percent of	Percent Cover	Percent of
		Individual Seagrass	Control Site	Remaining in	Services Lost in	Remaining in	Services Lost in
Species	Category	Species	Control Site	Trench Scar	Trench Scar	Berm Scar	Berm Scar
T. testudinum	Density	82.99%	10.00%	1.00%	9.00%	1.00%	9.00%
H. wrightii	Density	17.01%	2.05%	1.00%	1.05%	1.00%	1.05%
S. filiforme	Density	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Total		100.00%	12.05%				

Average Braun-Blanquet Scores

Species	Category	Control	Trench Scar	Blow Hole
T. testudinum	Density	1.60	0.13	0.00
H. wrightii	Density	0.97	0.11	0.20
S. filiforme	Density	0.00	0.00	0.00

Prepared by: NOAA Damage Assessment Center, Marathon, FL

Appendix B: Myra Lee: Braun-Blanquet Scores

Quad #	Injury	T.t.	S.f.	H.w.	Other	Total Grass	TMA	CORAL	IB/OB	Sed. Type
1	С	0.5	0.5	0		1	1	1	ОВ	нн
2	С	1	0.5	0		2	0	1	ОВ	нн
3	С	1	1	0		2	1	1	IB	нн
4	С	2	1	0		2	2	0	IB	нн
5	С	2	0.5	0		2	2	2	ОВ	нн
6	С	0.5	1	0		1	1	1	ОВ	нн
7	С	1	1	0		2	1	1	IB	HH /R
8	С	2	1	0		2	2	1	IB	HH /R
9	С	1	1	0		2	2	0	ОВ	НН
10	С	1	1	0		2	2	0	IB	НН
11	С	2	1	0		2	1	0		НН
12	С	3	1	0		3	2	0		HH /R
13	С	3	2	0		3	1	0		HH
14	С	2	1	0		2	1	0		HH
15	С	2	1	0		2	2	0		HH
Average		1.60	0.97	0.00		2.00	1.40	0.53		
16	ВН	0	0	0		0	0	0		HH /R
17	BH	0	0	0		0	0	0		HH
18	ВН	0	0	0		0	0	0		HH
19	BH	0	0.1	0		0.1	0	0		HH
20	ВН	0	0	0		0	0	0		НН
Average		0.00	0.02	0.00		0.02	0.00	0.00		
21	TR	0	0	0		0	0.1	0	IB	НН
22	TR	0	0	0		0	1	0	ОВ	нн
23	TR	0.5	0.5	0		0.5	1	0	ОВ	НН
24	TR	0	0	0		0	0.1	0	IB	НН
25	TR	0.1	0.50	0		0.5	0.1	0	IB	НН
26	TR	0	0	0		0	0	0	ОВ	HH/CR
27	TR	0.1	0.1	0		0.5	0.5	0	IB	HH
28	TR	0.5	0	0		0.5	0	0	IB	HH
29	TR	0.1	0	0		0.1	0	0	OB	HH
30 A verage	TR	0	0	0 0		0	0.5	0 0	ОВ	HH
Average		0.13	0.11	U		0.21	0.33	U		

KEY TO ABBREVIATIONS

Species:

T.t. = Thalassia testudinum S.f. = Syringodium filiforme H.w. = Halodule wrightii TMA = Total Macroalgae **Sediment Types:**

LC = Live Coral MS = Muddy Sand SM = Sandy Mud R = Rock **Injury Regions:**

M= Mud
CS = Coarse Shell
HH = Halimeda Hash
CR = Coral Rubble

TR = Trench
BH = Blow Hole
BM = Berm
C = Control (Reference)

Appendix C: Braun-Blanquet Score to Percent Cover Conversion Tables

Interpolation of the Mid-Point of BB Scores					
BB Score	% Cover	BB Score	% Cover		
0.00	0.00%	2.60	28.50%		
0.10	1.00%	2.70	30.75%		
0.20	1.00%	2.80	33.00%		
0.30	1.00%	2.90	35.25%		
0.40	1.00%	3.00	37.50%		
0.50	1.00%	3.10	40.00%		
0.60	1.00%	3.20	42.50%		
0.70	1.00%	3.30	45.00%		
0.80	1.00%	3.40	47.50%		
0.90	1.00%	3.50	50.00%		
1.00	2.50%	3.60	52.50%		
1.10	3.75%	3.70	55.00%		
1.20	5.00%	3.80	57.50%		
1.30	6.25%	3.90	60.00%		
1.40	7.50%	4.00	62.50%		
1.50	8.75%	4.10	65.00%		
1.60	10.00%	4.20	67.50%		
1.70	11.25%	4.30	70.00%		
1.80	12.50%	4.40	72.50%		
1.90	13.75%	4.50	75.00%		
2.00	15.00%	4.60	77.50%		
2.10	17.25%	4.70	80.00%		
2.20	19.50%	4.80	82.50%		
2.30	21.75%	4.90	85.00%		
2.40	24.00%	5.00	87.50%		
2.50	26.25%				

BB Score	Mid-Point Range
<1= <1%	<1= 1%
1=1%-5%	1=2.5%
2= 5%-25%	2=15%
3= 25%-50%	3=37.5%
4= 50%-75%	4=62.5%
5= 75%-100%	5=87.5%